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Abstract: We show that the requirement of Poincaré invariance (more specifically invari-

ance under boosts/rotations that mix brane directions with transverse directions) places

severe constraints on the form of actions describing multiple D-branes, determining an in-

finite series of correction terms to the currently known actions. For the case of D0-branes,

we argue that up to field redefinitions, there is a unique Lorentz transformation rule for

the coordinate matrices consistent with the Poincaré algebra. We characterize all indepen-

dent Poincaré invariant structures by describing the leading term of each and providing

an implicit construction of a Lorentz invariant completion. Our construction employs new

matrix-valued Lorentz covariant objects built from the coordinate matrices, which trans-

form simply under the (extremely complicated) Lorentz transformation rule for the matrix

coordinates.
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1. Introduction

Consider a collection of N D0-branes in flat Rd+1.1 Their low-energy configurations are

described by d N × N Hermitian matrices Xi(t) [1], and their dynamics is controlled by

some effective action2

S[X(t)] =

∫

dt L(X(t)) .

Now consider the same system as described by an observer in an infinitesimally boosted

frame. Again there will be a description in terms of d N × N Hermitian matrices, related

to those in the original frame by a Lorentz transformation

X̃i(t) = Φi[X(t), βj ] , (1.1)

where βj is the velocity of the boosted frame. The second observer should describe physics

by the same action since the background is unchanged. Since X̃ and X describe physically

equivalent configurations, it must be that

S[X(t)] = S[X̃(t)] (1.2)

for any X.

The goal of this paper will be to understand the Lorentz transformation rule (1.1)

for the matrix coordinates of D-branes, and to understand the constraints imposed on the

action by requiring invariance (1.2) under this transformation.

The problem we consider here is quite nontrivial3 because the description of a single

brane in terms of covariant embedding coordinates xµ(τ), upon which Lorentz transforma-

tions act simply, cannot as yet be generalized to describe multiple branes. In the case of

multiple branes, the usual description generalizes the static gauge description of a single

brane, where reparametrization invariance is used to set x0(τ) = τ and the space-time

embedding is then completely specified by the spatial coordinates xi(τ). In this picture,

Lorentz transformations which mix space and time are somewhat messy even in the abelian

case, and turn out to be extremely complicated for the non-abelian case.

1These could be the usual D0-branes of type IIA string theory with d = 9, or any other pointlike D-branes

arising from higher dimensional branes wrapped on cycles in a compactification.
2Here, all bulk fields have been set to zero.
3Indeed, to our knowledge none of the actions for multiple D-branes that have appeared previously in

the literature are Poincaré invariant apart from the cases p = −1 and p = 9 which are trivial.
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1.1 Background

Our analysis here is another step in a program to understand the implementation of and

constraints arising from the full set of bulk space-time symmetries on multiple D-brane

actions.4 The motivation is both to understand the actions themselves, but more generally

to understand whether there is some natural geometric language (as we have in the abelian

case) in terms of which multiple D-brane actions are simple.

Previously ([6], see also [7]), we considered the case of spatial diffeomorphisms in a

system of D0-branes coupled to gravity. We saw that the matrices describing D0-brane

configurations have a very complicated transformation rule under the diffeomorphisms,

and that demanding invariance of the action under such transformations imposes severe

constraints. Most interestingly, we showed the existence5 of a covariant matrix-valued

vector field built from the coordinate matrices, which allowed us to construct (though

somewhat implicitly) the most general action invariant under spatial diffeomorphisms.

The restriction to spatial diffeomorphisms in our previous work was made specifically

to avoid transformations that mix world-volume directions with transverse directions de-

scribed by matrices. As we have seen above, such transformations present an additional

complication, since they look complicated even in the abelian case if we restrict to the

static gauge. Before attempting to analyze the full group of space-time diffeomorphisms,

it is natural to begin with the simplest case for which the additional complication arises,

namely Lorentz transformations for a system of D0-branes in flat space. This is the focus

of the present paper.

1.2 Outline and summary

We begin in section 2 with an order-by-order analysis of the transformation law. We

determine the infinitesimal Poincaré transformations for a single particle in static gauge,

and show that the simplest generalization of these to the matrix case does not respect

the Poincaré algebra. We find that it is possible, working to all orders in X and up to

two commutators, to add commutator terms to the boost transformation rule such that the

Poincaré algebra is restored. The success of this procedure is highly nontrivial and provides

significant evidence that a consistent transformation rule exists to all orders.6 Assuming

this, we show that the boost transformation law is unique up to field redefinitions which

do not affect the other Poincaré transformations.

In section 3, we begin our analysis of the invariant actions, now working order-by-

order in X in the static gauge. Using the transformation rule from section 2, we find that

it is possible to add terms order-by-order to the leading Tr(Ẋ2) kinetic term and to the

simplest potential term Tr[Xi,Xj ]2 to obtain (independent) Lorentz invariant results (we

work up to order X6). We determine a necessary condition that must be satisfied by the

leading term of any Poincaré invariant structure, generalizing the necessary conditions of

4Early work on understanding the structure of non-abelian D-brane actions based on general principles

was initiated by Douglas [2, 3]. For general reviews discussing the physics of multiple D-branes, including

many additional references, see [4, 5].
5Here, the existence of a consistent transformation rule for the coordinate matrices was assumed.
6Of course, this should be guaranteed if string theory is consistent and Lorentz invariant in flat space.
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time-reversal and Galilean invariance (including parity) in the abelian case. Finally, we

show that for any choice of field there is at most one invariant action depending on Ẋ and

not X or higher derivatives of X. Unfortunately, we find that any invariant generalization

of the abelian kinetic term may be written in this way for some appropriate choice of field,

so it is not clear whether a canonical non-abelian generalization of the usual relativistic

kinetic term exists.

In section 4, we look for a more natural way to write Lorentz invariant actions. As

in our previous studies, we look for matrix-valued covariant objects defined as fields over

space-time from which we can build manifestly invariant actions as integrals over space-

time. We find (at least up to fifth order in X) that there exists a covariant matrix vector

field V µ(y) built from X but transforming simply under a Lorentz transformation ỹµ =

Λµ
ν yν as

Ṽ µ(ỹ) = Λµ
νV

ν(y) .

In the abelian case, V is the derivative of the proper distance to the trajectory along

a geodesic which intersects the trajectory orthogonally. In addition, we find a covariant

matrix distribution function Θ(y) which reduces in the abelian case to

Θ(y) =

∫

dτ
√

−∂τxµ∂τxµ δd+1(xν(τ) − yν) .

In section 5, we show that all Poincaré invariant actions may be written using these

two covariant objects as

S =

∫

dd+1y Tr(L(V (y))Θ(y)) ,

where L is a scalar built from V . The independent Poincaré invariant structures may be

characterized by their leading terms, which may either be
∫

dt Tr(Ẋ2) or may be written

as the integral of a Lagrangian L(X, Ẋ, Ẍ, . . .) with an even number of Xs and time

derivatives satisfying

∂εL(X + ε, Ẋ, . . .) = ∂βL(X, Ẋ + β, . . .) = 0 ,

i.e. a term with all Xs and Ẋs appearing in complete commutators. This is precisely the

necessary condition we found in section 3, so we conclude that the one-to-one correspon-

dence between Poincaré invariant structures and Galilean (and time-reversal) invariant

leading terms familiar from the abelian case extends to the non-abelian case also.

In section 6, we discuss the couplings to space-time supergravity fields. We note that

Lorentz symmetry also implies higher order corrections to these terms, and in particular to

the various conserved space-time currents associated with the branes (e.g. the stress-energy

tensor or Dp-brane currents).

We offer a few concluding remarks in section 7.

1.3 Relation to other work

Most previous work on corrections to flat-space non-abelian D-brane actions focuses on the

gauge field on the world-volume of the Dp-branes. It is now known (see references below)
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that these corrections do not in general take the simple symmetrized form of [8], but contain

(covariant) derivatives and commutators. Using T-duality, one should be able to obtain

D0-brane actions from these Dp-brane actions that are consistent with the requirement of

Poincaré invariance. However, we have not attempted to verify if this is true; any attempts

to do so should take into account field redefinitions that change the form of the Lorentz

transformation law.

Corrections to the non-abelian Dp-brane gauge field effective action were calculated

via direct string amplitude calculation [9, 10], requiring supersymmetry [11 – 13], requiring

the existence of BPS solutions [14], the Seiberg-Witten map [15] and the spectrum of

intersecting branes [16, 17]. Derivative corrections to the abelian effective action were

found in [18] (for the transverse scalars) and in [19, 20] (for the gauge field). For a more

complete set of references, see [21].

2. Poincaré transformation rules for multiple D0-branes

The usual description of the low-energy degrees of freedom for a collection of N D0-branes

utilizes one N × N Hermitian matrix Xi(t) for each spatial direction, each a function of

the world-volume time. In this section, we would like to understand how these matrix

coordinates transform under Poincaré transformations.

2.1 Transformation rules in the abelian case

We begin by recalling the Poincaré transformation rules for a single D0-brane in (d +

1)-dimensional Minkowski space. In this case, the brane can be described by a set of

embedding functions xµ(τ) whose Poincaré transformations are simply

x̃µ(τ) = Λµ
ν xν(τ) + aµ . (2.1)

To ensure that the system has the correct number of physical degrees of freedom, we must

also demand the (gauge) invariance of the action under world-volume diffeomorphisms

τ → τ ′ = f(τ) . (2.2)

It would be nice if the transformation rules (2.1) could be extended in some simple way

to the non-abelian case, e.g. by introducing matrices for all space-time (rather than just

spatial) directions. Unfortunately, there is no obvious way to do this, and such a descrip-

tion would seem to require an analogue of the world-volume reparametrization symmetry

capable of eliminating an entire matrix worth of degrees of freedom.

2.2 Abelian transformation rules: static gauge

The description that does generalize easily to the non-abelian case is one in which the

world-volume reparametrization invariance has been fixed by choosing

x0(τ) = τ . (2.3)
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To make progress in understanding the non-abelian transformation law, we will therefore

rewrite the abelian transformation rules in this ‘static gauge’ description and try to gener-

alize these to the case of multiple branes.

Throughout, we will use t to denote the world-volume parameter in static gauge, to

emphasize that world-volume time has been set equal to target-space time. Now starting

from a set of static gauge embedding functions xµ(t) = (t, xi(t)), it is evident that applying

the coordinate transformation (2.1) will bring us out of the static gauge. Therefore, we must

combine the transformation (2.1) with a compensating world-volume diffeomorphism (2.2)

which restores the static gauge. The resulting static-gauge Poincaré transformation rule is

x̃i(t) = Λi
0 h−1(t) + Λi

j xj(h−1(t)) + ai, (2.4)

where h(t) ≡ Λ0
0 t + Λ0

i xi(t) + a0. While this is much more complicated than (2.1),

it acts only on the spatial coordinates, and therefore has a chance of generalizing to the

non-abelian case.

In order to simplify matters as much as possible, we specialize to the case of infinites-

imal transformations. Then the static gauge transformation rules for translations, time

translations, rotations, and boosts take the form

δ~ax
i = ai ,

δa0xi = −a0ẋi ,

δωxi = ωijxj ,

δβxi = βit − βjẋixj . (2.5)

It is the non-linearity in the infinitesimal transformation rule for boosts that makes a

generalization to the non-abelian case quite nontrivial.

2.3 The Poincaré algebra as a consistency condition

The Poincaré transformation rules for the matrix coordinates of multiple D0-branes should

be some generalization of (2.5). Since they must reduce to (2.5) in the case where all

matrices are diagonal, it must be that all corrections involve commutators of matrices. A

further constraint comes from demanding that the Poincaré algebra is still satisfied by the

non-abelian transformations.

The rotation, translation, and time translation rules in (2.5) are linear in X and

generalize unambiguously to the non-abelian case without modification. We will assume

that these receive no commutator corrections, since it is consistent with the algebra of

rotations and translations (and certainly very natural) to do so.

For the boost transformation law in (2.5), an ordering issue arises since there are

various non-abelian generalizations of the quadratic term. The Poincaré algebra demands

that the correct generalization must satisfy

(δ
β̃
δβ − δ

β̃
δβ)X = δ

ωij=βiβ̃j−βj β̃iX , (2.6)

(δ~aδβ − δβδ~a)X = δa0=β·aX , (2.7)

(δa0δβ − δβδa0)X = δ
~a=a0~β

X , (2.8)

(δβδω − δωδβ)X = δβi=ωijβjX . (2.9)
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In fact, it is easy to show that (2.6) is not satisfied for any of the possible orderings of

the quadratic term without adding corrections to the transformation law at higher orders

in X.

We will therefore write the putative Poincaré transformation rules for the non-abelian

case as

δ~aX
i = ai ,

δa0Xi = −a0Ẋi ,

δωXi = ωijXj ,

δβXi = βit − βj Sym(ẊiXj) + βjT ij . (2.10)

where Sym indicates the symmetrized ordering (Sym(AB) = 1
2(AB +BA)) and T ij stands

for some series of terms that vanish for diagonal Xi.7 We now ask whether it is possible

to choose Hermitian T ij built from X and its derivatives such that the constraints (2.6),

(2.7), (2.8), (2.9) are satisfied.

First, the constraint (2.9) is satisfied automatically as long as T ij is a tensor under

the rotation group. Any tensor built from the vector Xi and its derivatives satisfies this

constraint.

Next, the constraint (2.8) is satisfied as long as T ij contains no explicit time depen-

dence.

The constraint (2.7) implies that

∂εT
ij(X + ε) = 0 ,

i.e. all undifferentiated Xs must appear in commutators.

Finally, the constraint (2.6) implies that

βjδ
β̃
Sij − β̃jδβSij = βiβ̃jXj − β̃iβjXj , (2.11)

where

Sij = − Sym(ẊiXj) + T ij .

This turns out to be quite nontrivial, and we resort to an order-by order approach to check

whether a solution exists.

2.4 Order-by-order solution

It is straightforward to check that (2.11) holds at leading orders with T ij = 0, but breaks

down at order X3 unless we add commutator corrections T ij at order X4. We find that

these must satisfy

δ0
βT ij

(4) =
1

8
βk

(

−[Ẍi, [Xk,Xj ]] + [Ẋk, [Xj , Ẋi]] − [Ẋj , [Xk, Ẋi]]
)

, (2.12)

where δ0
β indicates the variation keeping only the order X0 term in the boost transformation

law (2.10).

7Note that we are not assuming that the quadratic term is symmetric, since T ij may contain quadratic

commutator terms.
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Appropriate corrections are possible at this order, for example8

T ij
(4) =

1

8
Sym

(

−Ẋk[Ẍi, [Xk,Xj ]] + Ẋk[Ẋk, [Xj , Ẋi]] − Ẋk[Ẋj , [Xk, Ẋi]]
)

. (2.13)

Note that the equations (2.12) determining T ij at this order are overconstrained in the sense

that solutions exist only for special choices of the right-hand side. Thus, the existence of

a solution can be taken as a first piece of evidence that the Poincaré transformation rules

admit an extension to the non-abelian case. This expression is not unique, but we will see

shortly that all possible solutions are related by a class of field redefinitions.

We might now proceed ad nauseam checking at each order in X that a choice of T ij

exists such that the constraint (2.11) is satisfied to the appropriate order. Instead, we will

take a slightly more refined approach that we now describe.

2.5 The expansion in number of commutators

Throughout this paper it turns out to be possible to obtain partial all-order results in

powers of X, when expanding in the number of commutators. Suppose we have a term

consisting of a product of matrices at some order. Then we can always symmetrize this

product and compensate by adding appropriate terms with commutators. These extra

terms can in turn be symmetrized, where the commutators are considered as a unit under

the symmetrization, by adding terms with more commutators and so on. In the end, one

obtains a sum of symmetrized products. Because of the overall symmetrization the number

of commutators in a term has a definite meaning. Only the first term does not contain

commutators and remains in the abelian limit. The other terms are non-abelian corrections

with a fixed number of commutators. If the non-abelian corrections are small it would be

sensible to calculate only up to a certain number of commutators, and we will often employ

such an expansion in this paper.

Using this approach, we have checked that a solution to the constraint (2.11) and

therefore a consistent boost transformation rule exists to all orders in X at second order

in commutators. The result, derived in appendix A is

T il = Sym

[

1

8
EjtẊt(−[Ẍi, [Xj ,X l]] + [Ẋj , [X l, Ẋi]] − [Ẋ l, [Xj , Ẋi]])

−
1

8
Ej1t1Ẋt1Ej2t2Ẋt2

(1

3

...

X
i[Xj1 , [Xj2 ,X l]]

+Ẍj1[Xj2 , [Ẋi,X l]] + Ẍi[Ẋj1 , [Xj2 ,X l]]
)

−
1

8
Ej1t1Ẋt1Ej2t2Ẋt2Ej3t3Ẋt3ẌiẌj1 [Xj2 , [Xj3 ,X l]]

−
1

8
Ej1t1Ẋt1Ej2t2Ẋt2

(

[Ẍi,Xj1 ][Xj2 , Ẋ l] + [Ẋi,Xj1 ][Ẋj2 , Ẋ l] + [Ẋi, Ẋl][Ẋj1 ,Xj2 ]
)

+
1

8
Ej1t1Ẋt1Ej2t2Ẋt2Ej3t3Ẋt3

(1

3

...

X
i[X l,Xj1 ][Xj2 , Ẋj3 ] − Ẍi[Ẋ l,Xj1 ][Xj2 , Ẋj3 ]

+Ẍj1[Ẍi,Xj2 ][Xj3 ,X l] − Ẍ l[Ẋi,Xj1 ][Ẋj2 ,Xj3 ]
)

8The operation Sym is assumed to treat commutator expressions as a unit in the symmetrization.
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−
1

8
Ej1t1Ẋt1Ej2t2Ẋt2Ej3t3Ẋt3Ej4t4Ẋt4ẌiẌj1[Xj2 , Ẋj3 ][Xj4 ,X l]

]

, (2.14)

where Ejt is the inverse tensor

Ejt
(

δtp − ẊtẊp
)

= δjp. (2.15)

The existence of a full solution even to second order in commutators is extremely nontrivial

and suggests strongly that a consistent boost transformation law exists to all orders. While

we are not able to prove this, we will now show that any such transformation rule must be

unique up to a class of field redefinitions.

2.6 Uniqueness of the transformation rule up to field redefinitions

It is easy to see that we cannot expect a completely unique solution to the constraints

outlined so far for the non-abelian generalization of the boost transformation law. For,

consider a new variable

X̃i = Xi + F i(X) , (2.16)

where F is a polynomial in X (possibly infinite) defined so that X̃ and X agree in the

abelian case and X̃ has the same transformation rule as X under rotations, translations,

and time translations. These will be true as long as

• F i(X) is a vector built from X and its derivatives that vanishes for diagonal X;

• F i(X) has no explicit time dependence;

• F i(X) is translation invariant (has all undifferentiated Xs appearing in commuta-

tors).

The transformation rule for X̃ under boosts (obtained by transforming the right side

of (2.16) and rewriting all occurrences of X in terms of X̃ by inverting (2.16)) will generally

be different from that of X, with the lowest order change in T ij given by

βj∆T ij = δ0
βF i . (2.17)

As above, δ0
βXi = βit denotes the order X0 term in the boost transformation law. The

new transformation rule will necessarily be consistent with the Poincaré algebra, as this

follows directly from consistency of the transformation rule for X. Since the other Poincaré

transformations remain the same, the boost transformation rule for X̃ represents a new

solution to the constraint (2.11).

On the other hand, it is straightforward to show that all nonuniqueness in the trans-

formation law may be associated with such field redefinitions. For suppose that there exist

two different transformation laws δβX and δ̃βX for which the constraints (2.11) and all

other constraints of that subsection are satisfied. Then the leading order difference ∆0T
ij

between T ij and T̃ ij must satisfy

βj
2δ

0
β1

∆0T
ij − βj

1δ
0
β2

∆0T
ij = 0 . (2.18)
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It follows that ∆0T
ij is of the form9

∆0T
ij = Sym

(

Ẋk1 · · · ẊkmDi(jk1...km)
)

, (2.19)

where Di(jk1...km) is an arbitrary tensor that cannot contain X and Ẋ outside of commuta-

tors. But (2.17) shows that this is the same leading order difference that arises in making

a field redefinition (2.16) with

F i =
1

m + 1
Sym

(

ẊjẊk1 · · · ẊkmDi(jk1...km)
)

. (2.20)

If δβX and δ̃βX differed at order Xn, then δβX̃ and δ̃βX may differ only at higher order.

We may then repeat our procedure, making a further field redefinition to remove the leading

discrepancy at this order, and so forth, so that after an infinite number of steps we find some

new variable Xi
∞ such that δβX∞ is the same as δ̃βX. Note that the F in (2.20) satisfies

all the constraints of the previous paragraph, since the discussion before equation (2.11)

implies that ∆0T
ij should satisfy these same constraints.

Thus, any two consistent generalizations of the Poincaré transformations to the non-

abelian case are related by a field redefinition that is trivial in the abelian case and preserves

the transformation rules for rotations, translations, and time translations.

3. Poincaré invariant actions for multiple D0-branes

In this section, we begin to investigate the constraints imposed by Poincaré invariance

on the form of the effective action. We will assume henceforth that a consistent boost

transformation rule exists (generalizing (2.14) to all orders). In particular, we assume that

(as in (2.14)) it is possible to write such a transformation law without introducing any

dimensionful coefficients, such that all terms will have one less time derivative than the

number of Xs.10

In our discussions below, we consider explicitly only single-trace actions, which arise

in string theory at the leading order in gs, but we expect that most of the results generalize

readily to the case of multi-trace actions.

3.1 Abelian case

As a warm up, consider the case of a single brane, for which the leading term in the effective

action is simply the non-relativistic kinetic term11

S0 =

∫

dt
1

2
ẋ2 . (3.1)

9Here, the round brackets denote symmetrization.
10In the context of string theory one might wonder if the correct transformation law involves higher order

terms with explicit powers of α′. However, our results from the previous section suggest that there does

exist a valid transformation law without any α′ dependence and that any α′ dependent transformation law

should be equivalent to this by a field redefinition (that would necessarily involve explicit factors of α′).
11Throughout this paper, we take units in which c = 1 and the particle mass is set to 1.

– 10 –



J
H
E
P
0
1
(
2
0
0
6
)
1
5
1

This action is Galilean invariant but not Lorentz invariant. If we demand invariance under

the boost transformation in (2.5), we must add a higher order term 1
8 ẋ4 to the action so

that the variation of (3.1) under the second term in (2.5) is cancelled by the variation of

this term under the first term in (2.5). The variation of the new term under the second

term in (2.5) must be cancelled by the variation of yet a higher order term, and so forth.

Of course, we know it is possible to carry this out to all orders, with one possible Lorentz

invariant completion being the relativistic kinetic term

S = −

∫

dt
√

1 − ẋ2 = −

∫

ds . (3.2)

This result is not unique, since there are higher order Lorentz invariant structures we could

add with arbitrary coefficients. The first of these is

−

∫

ds

(

d2xµ

ds2

d2xµ

ds2

)

=

∫

dt

(

ẍ2

(1 − ẋ2)
3
2

+
(ẋiẍi)2

(1 − ẋ2)
5
2

)

, (3.3)

where s is proper time, and generally, we will have one Lorentz invariant structure for each

Galilean (and time-reversal) invariant leading term. On the other hand, (3.2) is the unique

Lorentz invariant action depending on ẋ and no higher derivatives of x.

We would now like to see how these statements generalize to the non-abelian case.

3.2 Constraints for leading order invariant terms

Ideally, we would like to be able to write down the most general Poincaré invariant action

depending on the matrix X and its derivatives. Such an action would be a general linear

combination of all possible independent Poincaré invariant structures with arbitrary coef-

ficients. As a first step, we will determine a set of necessary conditions that the leading

term (with the fewest Xs) in any such structure must satisfy.

Apart from the boost transformation law, the remaining Poincaré transformations

in (2.10) do not mix terms with different numbers of Xs, so the leading term must be a

rotational scalar, have no explicit time dependence, and be invariant under a shift in X by

a multiple of the unit matrix,

∂εS0(X + ε) = 0 . (3.4)

We must also have invariance of the leading term under parity and time-reversal transfor-

mations, and this requires an even number of Xs and an even number of time derivatives

respectively. Finally, the leading term must be invariant under the X0 term in the boost

transformation rule, since the variation of the full set of terms under the full transformation

law will contain no other terms of this order. Thus, we must also have

∂βS0(X + βt) = 0 . (3.5)

Note that these are the same conditions as in the abelian case, and are simply the statement

that the leading term must be invariant under the Galilean group (including parity) plus

time reversal transformations.
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It is obvious that any term for which all Xs and Ẋs appear in commutators satis-

fies (3.4) and (3.5), since in this case, even the variation of the Lagrangian is zero. More

generally, we may have terms for which the variation of the Lagrangian in (3.4) or (3.5) is

a total derivative. One example is the non-abelian generalization of (3.1),12

S0 =

∫

dt Tr(Ẋ2) . (3.6)

In appendix B, we show that this is the only example which cannot be rewritten by partial

integration as a term for which all Xs and Ẋs appear in commutators.

Thus, the lowest-order term of any Poincaré invariant action is either (3.6), or can be

written as the integral of a scalar Lagrangian with no explicit time-dependence such that

all Xs and Ẋs appear in commutators.

In section 5.1, we will argue that these necessary conditions on the leading term are

actually sufficient to guarantee the existence of a Poincaré invariant completion. For now,

in order to gain some confidence in this statement, we will construct the completions order-

by-order in a couple of examples using the order-by-order results from section 2.4 for the

transformation law.

3.3 Order-by-order construction of invariant actions

First, we consider the simplest possible Galilean invariant potential term,

S = C

∫

dt Tr

(

1

4
[Xi,Xj ]2

)

, (3.7)

present in the low-energy effective action for D0-branes in weakly coupled string theory (C

is some dimensionful constant). In this case, the first required corrections are at O(X6)

and take the form

S = C

∫

dt STr

(

1

4
[Xi,Xj ]2+ (3.8)

+
1

2
[Xi,Xk][Xj ,Xk]ẊiẊj −

1

8
[Xi,Xj ][Xi,Xj ]ẊkẊk

)

+ O(X8),

independent of the choice for the O(X4) and higher order terms in the transformation law.

It turns out that these correction terms reproduce known terms in the D0-brane effective

action obtained [8] by T-dualizing the simplest (symmetrized) non-abelian generalization

of the Born-Infeld action for D9-branes. Indeed, it may be checked that the correction

terms in (3.8) are precisely the O(X4Ẋ2) terms in

S = −

∫

dt STr

(

[

det(δij + Fij)(1 − Ẋi(δ + F )−1
ij Ẋj

]
1
2

)

, (3.9)

where Fij ≡ α′−1i[Xi,Xj ]. On the other hand, the required correction to (3.8) at order

X8 includes terms with Ẋ in commutators which are not reproduced by (3.9).

12Throughout this paper, we assume that the world-volume gauge field A0 on the D0-brane world-volume

has been set to zero by a gauge transformation.
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As a second example, we consider the simplest possible leading term, the non-relati-

vistic kinetic term (3.6). Using the boost transformation rule (2.10), (2.13) up to order

X4, we find that adding the symmetrized version of terms in the abelian relativistic kinetic

term suffices up to O(X5) to make the action invariant, but this breaks down at O(X6).

Fortunately, it is possible to add terms involving commutators at this order to restore

Poincaré invariance. For example, using (2.10), (2.13) for the boost transformation rule,

we find that the variation of

S = −

∫

dt STr

(

1 −
1

2
Ẋ2 −

1

8
(Ẋ2)2 −

1

16
(Ẋ2)3− (3.10)

−
1

24

(

ẊiẊk[Ẋi, Ẋj ][Ẋk, Ẋj ] − 3ẌiẊjẊk[Ẋk, [Xj , Ẋi]]−

−3ẌiẊk[Ẍi, Ẋj ][Xk,Xj ] + 2ẌjẊk[Xk, Ẋi][Ẋj , Ẋi]
))

+ O(X8).

is zero up to O(X7) terms that would presumably be cancelled by the leading order vari-

ation of O(X8) corrections to the action. The corrections here are not among the known

terms appearing in (3.9). We will see in the next subsection that these commutator cor-

rection terms can actually be eliminated by a field redefinition.

The expressions in this section are certainly not unique, since we can always add with

arbitrary coefficients any of the higher order invariant structures discussed in the previous

subsection. However, the absence of any obstruction to our order-by order construction at

the first non-trivial order can be taken as evidence that a full Poincaré invariant comple-

tion exists. In section 5.1, we will provide stronger evidence and suggest a way to write

manifestly invariant actions in terms of new covariant objects.

3.4 Non-abelian generalization of the relativistic kinetic term

In discussing the abelian case, we noted that among all invariant actions, there is a special

choice, the relativistic kinetic term (3.2), which depends only on ẋ and not on any higher

derivatives. To close this section, we would now like to see to what extend this generalizes

to the non-abelian case.13

To start, we show that any Poincaré invariant structure depending only on Ẋ must

(apart from additive and multiplicative constants) begin with the term (3.6). For, assume

the Lagrangian for some other invariant action S(Ẋ) had a different leading term Ln of

order Xn. According to the constraints of the previous subsection, Ln must have all Ẋs

in commutators so that the condition (3.5) holds, and will necessarily have n ≥ 4. The

leading contribution to the variation of this term comes from the second term of the boost

transformation in (2.10), and using the cyclicity of the trace, we can write

δ2
βLn = Tr(Sym(βjXjẌi + βjẊjẊi)Ci

n−1(Ẋ)) .

If the full action is invariant, this variation must combine with the variation of a higher

order term under the first term in (2.10) to give a total derivative

δ2
βLn + δ0

βLn+2 =
d

dt
Tr(βjXjQn(Ẋ)) .

13This subsection is not essential to the development in the remainder of the paper. The reader only

interested in the result may skip to the final summary paragraph on a first reading.
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Note that we cannot have terms where β is contracted with a derivative of X on the right

side since this would produce βjẌj terms which are not present on the left side. Comparing

all terms containing a second derivative of X, we have

Tr(Sym(βjXjẌi)Ci
n−1(Ẋ)) = Tr(βjXj d

dt
Qn(Ẋ)) . (3.11)

Now, on the left side, the βjXj always appears adjacent to the Ẍ in the trace. On the right

side, Q is of order Xn≥4, so there will certainly be terms for which the Ẍ is not adjacent to

βjXj . Thus, (3.11) is impossible, and our assumption that there exists a Poincaré invariant

action depending only on Ẋ whose leading term is not (3.6) must be false.

It follows immediately that given the non-abelian transformation rules, there can be

at most one independent invariant action depending only on Ẋ . If there were more than

one, then at least one linear combination would have a leading term other than (3.6), and

we have seen that this is impossible.

The present result is not quite as strong as it may sound. Since we have assumed a

specific transformation law, what we have actually shown is that for any given choice of

field, there is at most one action depending only on Ẋ . On the other hand, there could

be other independent actions which after appropriate field redefinitions depend only on Ẋ .

In the absence of some canonical choice for the field there would be no sense in which one

of these actions would be preferred over another and therefore no canonical generalization

of (3.2) to the non-abelian case. Actually, we will now see that any Poincaré invariant

generalization of (3.2) to the non-abelian case can be brought to a form which depends

only on Ẋ, using a suitable field redefinition. In fact, for any invariant kinetic action, there

is a choice of field for which the action takes the form

S = −

∫

dt STr
(√

1 − Ẋ2
)

. (3.12)

For, consider the most general Poincaré invariant action of the form

S =

∫

dt Tr

(

1

2
Ẋ2 + · · ·

)

. (3.13)

We assume that all higher-order terms have the same number of Xs as time derivatives,

since the variation of any other terms will not mix with the variation of these terms under

Poincaré-transformations. Now, consider the lowest order terms with second or higher

derivatives of X, or with Ẋ appearing in a commutator. These terms must be translation

invariant, so may be written with all undifferentiated Xs appearing in commutators. The

terms involving higher derivatives may clearly be written as
∫

dt Tr(ẌiF i(X)) , (3.14)

for some F , where we can use integration by parts to put any terms with three or more

derivatives on X in this form. Terms with no higher derivatives but some Ẋ appearing in a

commutator will be functions of Ẋ alone, so integrating by parts to remove the derivative

from some X appearing in a commutator will leave a set of terms all of which have a single

Ẍ . Rearranging commutators in some terms, we may again bring this set of terms to the

form (3.14).
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In both cases, the resulting F will still have all undifferentiated F s appearing in com-

mutators.14 Also, since the total number of time derivatives and Xs was assumed to be

equal, F will contain at least one undifferentiated X, which must therefore appear in a

commutator, so F vanishes in the abelian case. Thus, F satisfies all of the conditions listed

below (2.16) for an allowed field redefinition

Xi → Xi + F i(X) .

Under such a field redefinition, the leading modification to the action will come from the

change of the leading term in (3.13) and give (after integrating by parts)

S → S −

∫

dt Tr(ẌiF i(X)) + higher orders .

which eliminates the lowest order terms in S with either higher derivatives or Ẋ appearing

in a commutator. By repeated field redefinitions, we can achieve this at any order, ending

up with an action that contains no higher derivative terms and no commutators (i.e. a

completely symmetrized function of Ẋ). All terms in such an action survive in the abelian

case, for which the unique Poincaré invariant function of ẋ is (3.2), so our resulting action

must be precisely (3.12). At this point, we have fixed the choice of field completely, since

any further field redefinitions will introduce additional terms into the action.

To summarize the results of this subsection, we have shown first that for a given

definition of the field, there is at most one Poincaré invariant action depending on Ẋ and

no higher derivatives. On the other hand, we have shown any invariant generalization

of (3.2) may be written in this way by an appropriate field redefinition, and there will

be a unique choice of field for which this action takes the form (3.12). Thus, among the

many invariant non-abelian generalizations we expect for the relativistic kinetic term with

a particular choice of transformation law, there is no obvious way to make a canonical

choice.

4. Covariant objects

The naive order-by-order approach to writing down Poincaré invariant actions discussed in

the previous section is cumbersome to say the least. This motivates us to search for a set

of covariant objects, which transform simply under Poincaré transformations, to serve as

the basic building blocks for constructing manifestly invariant actions (just as we employ

the field strength in non-abelian gauge theories or the Riemann tensor in gravitational

theories).

Some hope for the success of this approach may be gained from our previous study [6]

(see also [22]) of how to implement invariance under spatial diffeomorphisms for D0-branes

in curved space. There, the transformation rule for matrices Xi under spatial diffeo-

morphisms was also extremely complicated, but we proved (assuming the existence of a

14Terms involving only Ẋ which do not contain any commutators may also be brought to the form (3.14),

but in this case, F will not be translation invariant.
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consistent transformation rule) the existence of a covariant object V i(y) built from X and

the metric, transforming as a vector field under spatial diffeomorphisms. In the abelian

case, this object reduces to the vector field (well-defined in some neighbourhood of the

brane) which at any point y points in the direction of the geodesic from y to x with length

equal to the geodesic distance.15 In terms of V , we were able to write the most general

invariant action as an integral over space-time

∫

ddy
√

−g(y) Tr(L(V (y), g(y), Rijkl(y), · · ·)δ(V (y))) , (4.1)

where L is some scalar Lagrangian density built from V , the metric, and covariant deriva-

tives of the Riemann tensor. The object δ(V ) (see [6] for the precise definition in the

non-abelian case) generalizes δd(xi − yi) and localizes the action to the brane locations in

the case of diagonal Xi where the branes have well-defined positions.

Based on this success, it is plausible that a similar construction may allow us to write

actions which are manifestly invariant under general diffeomorphisms, and in particular,

under the Poincaré transformations that we study in this work. Thus, we begin by searching

for an appropriate generalization of the vector field V i(y).

4.1 A covariant vector field

For the case of a single D0-brane, the spatial vector field V i(y) above has a very natural

generalization to a space-time vector field vµ(y) which contains the same information as

the static gauge embedding coordinates of the brane xµ(t) = (t, xi(t)). Through any point

y sufficiently close to the brane, there is a unique geodesic that intersects the brane world-

line orthogonally (with respect to the Lorentzian metric), and we define vµ(y) to be the

vector along this geodesic for which vµvµ is the squared geodesic distance.16

In flat space (which we restrict to in this paper) vµ(y) is the displacement vector from

yµ to the point xµ(ty) that is simultaneous with yµ in the instantaneous rest frame of the

brane. In other words,

vµ(y) ≡ xµ(ty) − yµ, (4.2)

where ty is implicitly determined by the condition

vµ(y)ẋµ(ty) = 0. (4.3)

For an accelerating brane, planes orthogonal to the brane will generally intersect each other

at points sufficiently far away, so it is clear that vµ(y) is not globally well-defined. However,

this is enough to ensure that there is a well-defined expansion for vµ(y) in powers of the

static gauge coordinates xi(t) and its derivatives, and it is this expansion that we will use

primarily in what follows.

15Alternatively, this is the field whose exponential map gives the constant xi, proportional to the spatial

derivative of the geodesic distance to the brane.
16Note that v will not be well-defined globally unless the trajectory is non-accelerating. For a uniformly

accelerating trajectory, v will cease to be well-defined beyond the Rindler horizon.
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Since our definition of vµ(y) was coordinate-independent, this must transform as a

four-vector under Lorentz transformations,

ṽµ(Λy) = Λµ
νv

ν(y) .

In particular, for an infinitesimal boost we have

δv0(t, ~y) = ~β · ~v (t, ~y) − t~β · ~∇v0(t, ~y) − ~β · ~y ∂tv
0(t, ~y),

δ~v (t, ~y) = ~β v0(t, ~y) − t~β · ~∇~v(t, ~y) − ~β · ~y ∂t~v (t, ~y). (4.4)

4.2 Generalization to the case of multiple D0-branes

We would now like to see whether vµ generalizes to the non-abelian case. That is, we

would like to construct a set of matrix-valued functions V µ(y) defined as a formal ex-

pansion in terms of Xi(t) which transform as a space-time vector field and which reduce

to diag(vµ
x1(y), . . . , vµ

xN (y)) when the matrices Xi(t) are diagonal. To ensure the latter

condition, we may write

V µ(y) = V µ
sym(y) + ∆V µ(y), (4.5)

where V µ
sym(y) is the expression obtained by replacing all occurrences of xi in the expansion

of vµ(y) with Xi and using the completely symmetrized product of matrices and ∆V µ(y)

is an expression that must involve commutators.

To see whether the construction is possible, we write the most general expansion of the

form (4.5) up to some order in X, and demand that the covariant transformation rules (4.4)

are satisfied to this order using the order-by-order results for the transformation rule ob-

tained in section 2.4. Happily, we find that at least up to order X5, it is possible to choose

∆V µ(y) so that the covariant transformation rules hold. The success of this procedure is

already quite nontrivial at order X4 for which we give the results in appendix C.

Unfortunately, we do not have a proof that an appropriate V µ(y) can be constructed

to all orders. If it can, it is easy to see that many such objects exist, since we may always

construct others from the original one e.g. Ṽ µ = V µ +∂ρVν [V
µ, ∂νV ρ]. There may be some

canonical choice for V µ, as we found in [6], but we do not know the additional constraints

that would select this.17 On the other hand, we will see that any choice for V (assuming

one exists) will allow us to construct the most general Poincaré invariant actions.

4.3 A covariant matrix distribution

Assuming that the covariant object V µ(y) exists in the non-abelian case, it is now trivial to

construct scalar fields L(y) simply by taking any product involving V µ and its derivatives

such that all indices are contracted with ηµν . To obtain an invariant action, we should

integrate over space-time, but we still need some analogue of the δ(V (y)) term in (4.1)

that would localize the action to well-defined world-volumes of the individual branes in

the case of diagonal Xi. We have not been able to construct such a distribution directly

17One constraint that we might impose is that V should satisfy ∂µVν = ∂νVµ. This holds in the

abelian case, since Vµ = −
1
2
∂µV 2. In the non-abelian case, given any definition of V µ we can take

Ṽ µ = −
1
2
∂µ(V νVν) which ensures that Ṽ µ is covariant and that ∂µṼν is symmetric.
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from the covariant object V µ. However, we find in this subsection that it is possible to

construct an object with the appropriate transformation properties directly, at least up to

two commutator terms to all orders in X.

Our goal is to construct from Xi(t) a matrix valued field Θ(y) such that actions of the

form

S =

∫

dd+1y Tr (L(y)Θ(y)), (4.6)

will be invariant if L is a scalar built from V µ. Here, Θ(y) should transform as a density

and should contain the matrix generalization of a delta function reducing the integral over

d+1-dimensional space-time to an integral over the one-dimensional world-sheet. In other

words, it is the matrix generalization of the distribution θ(y) for the single brane case,

which takes the form

θ(y) =

∫

dτ
√

−∂τxµ∂τxµ δd+1(xν(τ) − yν) . (4.7)

We will call it the covariant matrix distribution.

Under Lorentz transformation a density should transform as

Θ̃(Λy) = Θ(y), (4.8)

or specifically under an infinitesimal boost

δβΘ(t, ~y) = −t~β · ~∇Θ(t, ~y) − ~β · ~y ∂tΘ(t, ~y). (4.9)

Defining the moments of the distribution as

Θ(i1···in)(t) =

∫

ddy Θ(t, ~y) yi1 · · · yin , (4.10)

we find that the constraints (4.9) become

δΘ(i1...in) = ntβ(i1Θi2...in) − βl
d

dt
Θ(li1...in). (4.11)

To zeroth order in the commutators a solution to this constraint is given by

Θ(i1...in)
sym = Sym

(√

1 − Ẋ2 X(i1 . . . Xin)
)

. (4.12)

In fact, this is the only solution (modulo an overall constant and rescaling of X) build

solely out of X and Ẋ. In terms of the density we have at leading order

Θsym(t, ~y) = Sym
(
√

1 − Ẋ2 δd(X(t) − y)
)

, (4.13)

where

δd(X − y) ≡

∫

ddk

(2π)d
eiki(X−y)i

,

so that it indeed contains the required d-dimensional delta-functions in the case where X

is diagonal.
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We must now ask whether it is possible to add correction terms to (4.12) such that

the constraints (4.11) are satisfied with the non-abelian transformation rules (2.10), (2.14).

While we have not been able to prove this to all orders, we have checked through a lengthy

calculation that a solution exists up to second order in commutators but to all orders in X.

The two-commutator calculation is described in appendix D.2. We found that the

calculation simplified using the ansatz

Θ(i1...in) = Sym

(

∑

p

C
′(i1...ip
n Xip+1 . . . Xin)

)

, (4.14)

with

C
′(i1...in)
n =

√

1 − Ẋ2 C(i1...in)
n +

∂

∂Ẋj

√

1 − Ẋ2 Ej;(i1...in)
n

+
∑

k

∂

∂Ẋj1

. . .
∂

∂Ẋjk

√

1 − Ẋ2 R(j1...jk);(i1...in) . (4.15)

Explicit results for the tensors C, E, and R appear in appendix D.3. Up to two commuta-

tors we can take Cp = 0 for p ≥ 4 and Ep = 0 for p ≥ 3. Also, we can take all R tensors

zero except for R(j1j2);i1, R(j1j2) and R(j1j2j3).

The result given in the appendix is not unique, but we will see below that any specific

choice for Θ and V will be enough to generate all possible Lorentz invariant actions. From

now on, we will assume that covariant V µ(y) and Θ(y) exist to all orders, and proceed to

discuss the Poincaré invariant actions.

5. Manifestly Lorentz invariant D0-brane actions

Given the vector field V µ(y) and the covariant matrix distribution Θ(y), it is now manifest

that any action
∫

dd+1y Tr(L(y)Θ(y)) (5.1)

will be invariant as long as L is a scalar field built from V and its derivatives. To obtain

an explicit expansion of this action in powers of X and its time derivatives, we may use

the expansion

Θ(t, ~y) =
∞
∑

p=0

(−1)p

p!
Θ(i1...ip)(t) ∂i1 . . . ∂ipδ

d(y), (5.2)

of Θ in terms of its moments. Then the action takes the form

S =

∫

dt
∞
∑

p=0

Tr
(

∂i1 . . . ∂ipL(V )|yi=0 Θi1...ip(t)
)

. (5.3)

Since Θ(i1...ip) = O(Xp), the leading term in the action will come from the set of all terms

for which n + order (∂i1 · · · ∂inL) is a minimum.

The expression (5.1) clearly gives rise to a large class of invariant actions. It turns out

that any invariant action can be written in this way, as we now show.
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5.1 The most general Poincaré invariant action

In section 3.2, we showed that the leading term S0 of any Poincaré invariant action could

be written using a rotational scalar Lagrangian built from an even number of Xs and an

even number of time-derivatives, such that S0 =
∫

dt Tr(Ẋ2) or all Xs and Ẋs appear in

commutators. We will now show that any term satisfying these conditions has a Poincaré

invariant completion that may be written in the form (5.1), and that these completions

form a basis for the full set of Poincaré invariant actions.

First, if S0 =
∫

dt Tr(Ẋ2), we can write a Poincaré invariant completion as

−

∫

dd+1y Tr(Θ(y)) .

Otherwise, the leading order Lagrangian L0 may be written as a sum of terms for which all

Xs and Ẋs appear in commutators. Now L0 = Tr(L) is a rotational scalar, and by parity

and time reversal invariance, must have an even number of Xs and an even number of Ẋs.

Consequently, the index on each matrix (Xi)(m) will pair with the index on some other

matrix (Xi)(n) where m and n are the number of time derivatives on the first and second

matrix respectively.18 We now define a matrix object L(y) built out of V µ by making the

following replacements in L, depending on whether m and n are both even, both odd, or

of opposite parity. If m and n have the same parity, we replace

(Xi)(2k) · · · (Xi)(2l) → ∂(2k)V µ · · · ∂(2l)Vµ ,

(Xi)(2k+1) · · · (Xi)(2l+1) → −
1

2
∂(2k)∂µV ν · · · ∂(2l)∂νV

µ . (5.4)

Since the total number of time derivatives is even, there must be an even number of pairs

where m and n have opposite parity. We may then group these arbitrarily into pairs of

paired Xs, and make the replacement

(Xi)(2k) ···(Xi)(2l+1) ···(Xj)(2p) ···(Xj)(2q+1) → −∂2kV µ ···∂µ∂2lV α ···∂2pV ν ···∂ν∂2qVα.

(5.5)

After these replacements, we are left with an object L that transforms as a scalar field, so

the action ∫

dd+1y Tr(L(y)Θ(y)) (5.6)

will be Poincaré invariant. Furthermore, it is easy to check that in the replacements (5.4)

and (5.5), the contributions on the right side which are of lowest order in X have y-

independent terms which are precisely the terms on the left. It is important here that all

expressions V µ and ∂νV µ appear in commutators (since we assume all Xs and Ẋs do), so

that possible lower order terms from the leading yi in V i vanish. As a result, the leading

order term in L(y = 0) is exactly L, and all of the y-dependent terms in L(y) will only lead

18In particular, any terms involving an odd number of ε tensors will not be invariant under par-

ity/reflections, while terms involving an even number may be rewritten using δs. There will be additional

structures involving εs which are invariant under the part of the Poincaré group continuously connected to

the identity but violate either parity or time translation invariance; we will not discuss them further here.
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to higher order terms in the action, so the action (5.6) will have leading term
∫

dt L0. This

completes the proof (assuming the existence of covariant objects L and Θ) that all Galilean

and time-reversal invariant leading terms have Poincaré invariant completions that can be

written in the form (5.1).

To show that the terms just constructed form a basis for all Poincaré invariant actions,

let us suppose this were not true. Then consider some action S linearly independent from

the set Si we have just constructed. Then among all actions S −
∑

ciSi there must a

subset whose leading terms have maximum order. Choose an action Smax in this subset,

and suppose that Smax has leading term S0 at order Xp. By the results in section 2, this

term must be Galilean and time-reversal invariant, and we have just seen that S0 has some

Poincaré invariant completion S′ that can be written in the form (5.1). But then Smax−S′

is of the form S −
∑

ciSi and has a leading term of higher order than Smax, contradicting

our assumption.

To summarize, we have now shown that every Poincaré invariant action has a Galilean

and time-reversal invariant leading term, and any such term has a Poincaré invariant

completion that may be written in the form (5.1). Finally, the set of such terms form a

basis for all possible Poincaré invariant actions.

5.2 Examples

To close this section, we discuss as examples the Poincaré invariant completions of the

simplest kinetic and potential terms.

First, by the results of the previous subsection, the most general Poincaré invariant

completion of the kinetic term (3.6), allowing only terms with as many time derivatives as

Xs (i.e. terms that can mix with the leading term under a Lorentz transformation) is19

∫

dd+1y Tr(Θ(y)(−1 + L4(V (y)))) ,

where L4 is an arbitrary scalar built from V s and an equal number of derivatives, which

may without loss of generality be taken to be a term with at least two commutators of

order V 4 or higher.20 While the result is by no means unique, it is highly constrained

relative to the set of all possible translation and rotation invariant actions.

As a precise example of the degree to which the action has been constrained, consider

all terms with up to two commutators. In this case, there are only a finite number of

independent terms in L4 that can contribute. To see this, note that the leading term of

any such expression may be written schematically as

STr([X,X][X,X]X · · ·X) ,

19Note that any choice for L4 may be absorbed into a redefinition of Θ(y). The arbitrariness in Θ

corresponds to the freedom to make such redefinitions.
20This follows since the leading term in any higher order invariant action will be at least of order X4 and

by the construction of the previous subsection, we may construct such an action using an L with terms of

order V 4 and higher.
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where the total number of Xs is 4+2n for some n, and the total number of time derivatives

must be equal to this. For Galilean invariance, all Xs outside commutators must have at

least two time derivatives, so there must be at least 4n time derivatives. Then

4n ≤ 2n + 4,

so we have n ≤ 2. It is then easy to write down all possible leading terms containing two

commutators; up to total derivatives we find 8, 17, and 2 terms respectively for n equal to

0, 1, and 2. Thus, the most general Poincaré invariant completion of the kinetic term (3.6)

contains 27 arbitrary coefficients up to terms involving more than two commutators. On

the other hand, the number of independent translation and rotation invariant terms with

equal numbers of Xs and time derivatives and up to two commutators is infinite, so we

see that the additional requirement of boost invariance is indeed a severe constraint on the

action.

Using our results for Θ and V , we can write explicitly the most general Poincaré

invariant kinetic term up to two commutators as

S = −

∫

dt STr

[

√

1 − Ẋ2 +
∂

∂Ẋi

√

1 − Ẋ2 Ċi
1 +

∂

∂Ẋi

∂

∂Ẋj

√

1 − Ẋ2 R
(ij)
0 (5.7)

+
∂

∂Ẋi

∂

∂Ẋj

∂

∂Ẋk

√

1 − Ẋ2 R
(ijk)
0

]

+

∫

dd+1y Tr(Θsym(y)L4(Vsym(y))) + O([·, ·]3),

where Ci
1, R

(ij)
0 and R

(ijk)
0 are defined in appendix D.3. Here Θsym and Vsym are the sym-

metrized generalization of the abelian expressions for Θ and V , while L4 may be obtained

by promoting the general linear combination of our 27 Galilean invariant two-commutator

terms to Lorentz-scalar expressions built from V . Up to order X6 this reduces to our earlier

result (3.10) plus the general linear combination of the 25 independent Galilean invariant

terms with four and six time derivatives.

As a second example, we consider the Poincaré invariant completion of the potential

term (3.7). Allowing only terms that can mix with the leading term under a Lorentz

transformation, the most general invariant completion is

C

∫

dd+1y Tr(Θ(y)([Vµ, Vν ][V
µ, V ν ] + L6(V (y))) .

where L6 is the general linear combination of all scalars built from n V s and n−4 derivatives.

Without loss of generality, n may be taken to be at least 6, and all terms in L6 may be

taken to have at least 3 commutators. Thus, the full set of two-commutator terms in the

Poincaré invariant completion of (3.7) are uniquely determined to be

C

∫

dd+1y Tr(Θsym(y)([Vsymµ
, Vsymν

][Vsym
µ, Vsym

ν ])) .

where Θsym and Vsym are the symmetrized parts of Θ and V . Using the explicit results for

Vsym in appendix C and the expression for Θsym in (4.13), we find that the full set of two-

commutator terms are precisely the ones appearing in (3.9).21 The derivation of that action

21Because of the delta function appearing in Θsym, all terms in V µ of order (X − y)2 and higher vanish.
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relied on T-duality arguments specific to string theory, so it is interesting that at least the

two-commutator subset of terms can be derived purely based on Poincaré invariance.

Note that based on rotation and translation invariance alone, the full set of allowed

two-commutator correction terms to potential (3.7) is

∑

n

STr(bn[Xi,Xj ]2Ẋ2n + cn[Xi,Xj ][Xi,Xk]ẊjẊkẊ2n) ,

so in this case, the additional constraint of boost invariance fixes the infinite series of

coefficients bn and cn completely.

To close this section, we note that our structures V and Θ provide an alternate way to

write invariant actions even in the abelian case. For example, using our prescription, the

Galilean invariant term 1
2 ẍ2 has Lorentz invariant completion

∫

dd+1y ∂2vµ∂2vµ θ(y) .

Using the abelian expression (4.7) for θ and those in appendix C for v, this reduces precisely

to the right side of (3.3).

6. Lorentz covariant currents

We have seen that the requirement of Poincaré invariance places severe constraints on the

form of the effective action. In this section, we note that similar constraints arise in the

expressions for the conserved space-time currents associated with the branes. We use the

example of the D0-brane current for D0-branes in uncompactified type IIA string theory,

which couples to the Ramond-Ramond one-form field of type IIA supergravity. Identical

considerations apply to the other currents, which include the stress-energy tensor, the

higher brane currents, and the string current (which couples to the NS-NS two-form).

The D0-brane current Jµ(y) appears in the effective action coupled to the Ramond-

Ramond one-form Cµ as

S = µ

∫

d10y Cµ(y)Jµ(y) . (6.1)

Since Cµ is a Lorentz vector, Jµ(y) must be some expression built from Xi(t) transforming

as a vector under Lorentz transformations. At low energies / small velocities, the leading

order expression for Jµ(y) = (ρ(y), J i(y)) (ignoring fermions) is a simple generalization of

the abelian expression [23],

ρ(t, ~y) = Tr
(

δd(X(t) − y)
)

≡

∫

d9k

(2π)9
Tr(eiki(X−y)i

) ,

J i(t.~y) = Tr
(

Ẋi(t) δd(X(t) − y)
)

≡

∫

d9k

(2π)9
Tr(Ẋieikj(X−y)j

) . (6.2)

It is easy to check that current conservation,

∂µJµ = 0 , (6.3)
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is satisfied with these definitions. However, we will now see that Jµ does not transform as

a vector under Lorentz transformations (without additional correction terms).

A Lorentz vector field Jµ should transform under Lorentz transformations as

J̃µ(Λy) = Λµ
νJ

ν(y) . (6.4)

This implies that under an infinitesimal boost we have

δβρ (t, ~y) = ~β · ~J (t, ~y) − t~β · ~∇ρ (t, ~y) − ~β · ~y ∂tρ (t, ~y),

δβ
~J(t, ~y) = ~β ρ (t, ~y) − t~β · ~∇ ~J(t, ~y) − ~β · ~y ∂t

~J(t, ~y). (6.5)

It is convenient to define multipole moments of the current components as in (4.10). In

terms of these, the constraints of Lorentz covariance read

δβρ(i1···in) = ~β · ~J (i1···in) + ntβ(i1ρi2···in) − βj d

dt
ρ(ji1···in),

δβ
~J (i1···in) = ~β ρ(i1···in) + ntβ(i1 ~J i2···in) − βj d

dt
~J (ji1···in). (6.6)

Using the non-abelian transformation rules (2.10), (2.14), we may now check whether

these relations are satisfied for the moments that follow from the leading expressions (6.2)

for the currents, namely

ρ(i1···in)
sym = STr(Xi1 · · ·Xin),

J i;(i1···in)
sym = STr(ẊiXi1 · · ·Xin). (6.7)

It is easy to check that all the constraints (6.6) are satisfied with the expressions (6.7)

in the abelian case or for diagonal matrices, but are not satisfied in general. Thus, the full

Lorentz covariant D0-brane currents must include additional higher order terms involving

matrix commutators, and these correction terms should be heavily constrained by (6.6).

We have checked that up to two commutator terms and to all orders in X there do

exist corrections to the currents such that (6.6) are satisfied. The very tedious calculation

is briefly outlined in appendix D.1. It turns out that the result can be written as

ρ(i1...in) = STr

[

∑

p

(

n

p

)

C
(i1...ip
p Xip+1 . . . Xin)

]

,

J i;(i1...in) = STr

[

∑

p

(

n

p

)

(

ẊiC
(i1...ip
p + E

i;(i1...ip
p

)

Xip+1 . . . Xin)

]

, (6.8)

where Cp and Ep (which satisfy the same constraints as the objects of the same name

appearing in the covariant matrix distribution) are given in appendix D.3.

Up to two commutators we can take Cp = 0 for p ≥ 4 and Ep = 0 for p ≥ 3. We

remark here only that Cp and Ep do not contain any Xs without derivatives outside of

commutators. Furthermore C0 = 1 which gives the leading order (6.7) and the others

contain 2 commutators. By a field redefinition, it is also possible to set Ei
0 = 0 and Ci

1 = 0,

which then fixes the field redefinition ambiguity completely; however, it is not clear whether
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such a choice of field is the most natural. The result given in the appendix is not the only

possible solution. There are some terms that can be added with an arbitrary coefficient.

So as we found for the action, the constraints of Lorentz covariance are not enough to

completely determine the higher order corrections to the currents.

Current conservation (6.3) requires that

d

dt
C

(i1...ip)
p = pE

(i1;i2...ip)
p−1 , (6.9)

which is satisfied by the expressions in appendix D.3. Current conservation also assures

that the Chern-Simons action (6.1) is invariant under the gauge transformation of the R-R

field, δCµ = ∂µΛ.

Remarkably, in the whole calculation the cyclicity property of the trace is never used

so that even without the trace, these objects transform covariantly. While the existence

of Lorentz covariant conserved currents should have been expected by the existence of a

Lorentz and gauge invariant effective action coupling the brane degrees of freedom to the

bulk fields, we do no not know of any reason why untraced covariant currents should exist.

These provide further examples (along with Θ and V ) of matrix valued covariant objects.

Corrections to the D0-brane current were also proposed in [24]. It turns out that these

are part of a separate Poincaré covariant structure.

7. Discussion

In this note, we have focused on the simplest scenario for which a symmetry transformation

on the low-energy degrees of freedom of a system of multiple D-branes mixes directions

along the brane world-volume (in this case, the time direction) with directions transverse to

it. We hope that the observations here will be useful in understanding the constraints that

invariance under general diffeomorphisms imposes on the actions for arbitrary systems of

multiple branes in curved space. We note here that at least in the abelian case, the elements

V and Θ in our construction generalize naturally to branes of arbitrary dimension in curved

space, so we are optimistic that these elements will play a role in the general story [25].
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A. Calculation of the 2-commutator corrections to the transformation law

To calculate the 2-commutator corrections to the transformation law we first calculate the

deviation from (2.6) when using the naive boost transformation law with T ij = 0. This

will require us to work out a symmetrization nested within another symmetrization, for

which we can use the following formula (up to two commutators):

Sym(A1 . . . An Sym(B1 . . . Br)) Sym(A1 . . . An B1 . . . Br)

+
1

24

n
∑

i6=j=1

r
∑

k 6=l=1

Sym
(

[Ai, Bk][Aj , Bl]A1 . . . Âi . . . Âj . . . An B1 . . . B̂k . . . B̂l . . . Br

)

−
1

12

n
∑

i=1

r
∑

k 6=l=1

Sym
(

[Bk, [Ai, Bl]]A1 . . . Âi . . . An B1 . . . B̂k . . . B̂l . . . Br

)

+ O([·, ·]4). (A.1)

The result is the right-hand side of (2.12). Now however we are more ambitious than when

we solved for (2.12) in the main text and try to find a T ij such that up to second order in

the commutators

βjδ
β̃
T ij + β̃jβk Sym

(

Ṫ ikXj + ẊiT jk
)

=

1

8
β̃kβj

(

−[Ẍi, [Xk,Xj ]] + [Ẋk, [Xj , Ẋi]] − [Ẋj , [Xk, Ẋi]]
)

. (A.2)

Since we are working up to two commutators and T ij will already contain two commutators

we can put T ij = 0 in δβ̃ .

At this point we need to make a suitable ansatz for T ij. First observe that a term of

the general form

Ai1...iq = Sym
[

Ai1...iq;j1...jn;k1s1...kpspEk1s1. . . Ekpsp

(

1+ẊuEuvẊv
)p

Ej1t1Ẋt1 . . . EjntnẊtn
]

,

(A.3)

with Eks defined in (2.15), transforms as follows:

δβAi1...iq =

Sym
[

Ai1...iq;lj2...jn;k1s1...kpspEk1s1 . . . Ekpsp

(

1 + ẊuEuvẊv
)p

Ej2t2Ẋt2 . . . EjntnẊtn

−βlX lȦi1...iq −

q
∑

s=1

βlẊisAi1...is−1lis+1...kq + (n + 2p − m)βlẊ lAi1...iq

+
(

δ′Ai1...iq;j1...jn;k1s1...kpsp

)

Ek1s1 . . . Ekpsp

(

1 + ẊuEuvẊv
)p

Ej1t1Ẋt1 . . . EjntnẊtn
]

+ (higher − order commutators) (A.4)

where m denotes the number of derivatives in Ai1...iq;j1...jn;k1s1...kpsp and we defined

δ′βAr1...rs = δβAr1...rs + βlX lȦr1...rs +

s
∑

t=1

βlẊrtAr1...rt−1lrt+1...rs . (A.5)
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We put

T il = Sym

[

1

8
EjtẊt(−[Ẍi, [Xj ,X l]] + [Ẋj , [X l, Ẋi]] − [Ẋ l, [Xj , Ẋi]])

]

, (A.6)

and use (A.4) for q = 2, p = 0, n = 1 and m = 2. The first line in (A.4) produces the

desired compensating term on the right-hand side of (A.2), the second line vanishes against

the other terms on the left-hand side in (A.2) if n + 1 + 2p−m = 0. We need to introduce

more corrections however to cancel the third line. Continuing this process and using (A.4)

again to make suitable ansatze for the extra terms, eventually the terms in the third line

will vanish so that we do not need to add further terms and the process ends.

B. Characterization of Galilean invariant non-abelian actions

Here we prove that the minimal conditions (3.4), (3.5) for the leading term of a Poincaré

invariant action imply that the leading term of the Lagrangian is either Tr(Ẋ2) or can be

written in a way such that all Xs and Ẋs appear inside commutators.

We first show that any action satisfying

∂εS(X + ε) = 0 (B.1)

can be written as the integral of a Lagrangian with ∂εL(X + ε) = 0 i.e. such that all Xs in

L appear in commutators.

For suppose that an action S satisfying (B.1) is the integral of a Lagrangian L. Then

employing the symmetrized expansion discussed in section 2, we may write22

L = L̂ +
n

∑

m=1

1

m!
STr(L(i1...im)X

i1 . . . Xim), (B.2)

where the various terms in L̂ and L(i1...in) do not contain any free Xs. Here, the various

individual commutators or differentiated Xs appearing in a given term of L are to be

symmetrized with the remaining Xs. Now, for δεS to vanish under a translation δX = ε,

δL must be a total derivative

δεL = εi d

dt
U i . (B.3)

Generally, U i may be written

U i =
∑ 1

m!
STr(U i

(i1...im)X
i1 . . . Xim) ,

22We are using the fact that any product of matrices may be written as a sum of completely symmetrized

products, where the individual terms in a product must be individual matrices or complete commutators

of the form

[X
(n1)
i1

, [X
(n2)
i2

, [. . . , [X
(n

m−1)

i
m−1

, X
(nm)
im

] . . .]]]

where (n) represents the nth time derivative.
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so (B.3) becomes

n
∑

m=1

1

(m − 1)!
STr(L(i1...im)ε

i1Xi2 . . . Xim) =
∑

m

1

m!
STr(U̇ i

(i1...im)X
i1 . . . Xim) (B.4)

+
1

(m − 1)!
STr(U i

(i1...im)Ẋ
i1 . . . Xim) .

In this equation, consider the terms with the largest number of free Xs. To be precise, we

can substitute X → X +β and compare the terms with the largest power of β. Doing this,

we find it necessary that

L(i1···in) = U̇ i1
i2···in

+ Ci1···in ,

where C is a commutator, C ∼ [(Xj)(l),Ai1···in
j ]. Since

STr([(Xj)(l),Ai1···in
j ]Xi1 · · ·Xin) = n STr(Ai1···in

j [Xi1 , (Xj)(l)] · · ·Xin) ,

the term in (B.2) involving C can rewritten such that it has only n − 1 free Xs23 and

therefore can be absorbed into a redefinition of Li1···in−1 . With this redefinition, we now

have

L(i1···in) = U̇ i1
i2···in

. (B.5)

In particular, U must be completely symmetric on all its indices, so we can write U i
j1···jn

=

U(ij1···jn).

Comparing the terms in (B.4) with (n − 1) free Xs, we find

L(i1···in−1) = U(ji1···in−1)Ẋ
j + U̇ i1

i2···in−1
+ Ci1···in−1 ,

where Ci1···in−1 is a commutator. As before, by rearranging terms in the trace, we may

eliminate C in favour of a redefinition of L(i1···in−2). Thus,

L(i1···in−1) = U(ji1···in−1)Ẋ
j + U̇ i1

i2···in−1
,

and it must be that U i1
i2···in−1

is symmetric in all of its indices. Continuing in this way, we

find that by rearranging commutators, it is possible to ensure that all Us are completely

symmetric tensors and

L(i1···ik) = U(ji1···ik)Ẋ
j + U̇(i1···ik) (B.6)

for all k ≥ 1. Substituting (B.5) and (B.6) into (B.2), it follows that

L =
d

dt

∑

n

1

n!
STr(U(i1···in)X

i1 · · ·Xin) − Tr(UiẊ
i) + L̂ ,

where we have integrated by parts to get the second term. Since L̂ and U i do not contain

any free Xs by assumption, we conclude the action S can be written as the integral of a

Lagrangian density with all Xs in commutators, ∂εL̂(X + ε) = 0 (up to total derivative

terms).

23This assertion would be incorrect if A were [Xi, Xj ], but this is impossible, since the i and j indices

would have to contract with the indices on two other Xs which are symmetrized.
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Starting from a Lagrangian L that has been written so that it contains no free Xs, let

us now suppose the action is invariant under δX = βt. Then we must have

δβL =
d

dt
βiΦ

i . (B.7)

for some Φ. We can organize the symmetrized expansions of L and Φ in terms of the

number of free Ẋs (not appearing in commutators), to write

L = L̂ +

n
∑

m=1

1

m!
STr(L(i1...im)Ẋ

i1 . . . Ẋim) ,

Φi =
∑

m

1

m!
STr(Φi

(i1...im)Ẋ
i1 . . . Ẋim) . (B.8)

Here, by assumption, all Xs and Ẋs in L̂ and L(i1...im) appear in commutators. In Φi
(i1...im),

all Ẋs must appear in commutators by assumption. Also, unless we have Φi ∝ Xi, any

free X in Φi
(i1...im) would remain undifferentiated in at least some terms on the right side

of (B.7), and this is not allowed since the left side contains no free Xs. Thus, either Φi ∝ Xi

or all Xs and Ẋs in Φi
(i1...im) appear in commutators.

Inserting the expansions (B.8) in (B.7), we have

n
∑

m=1

1

(m − 1)!
STr(L(i1...im)ε

i1Ẋi2 . . . Ẋim) =
∑

m

1

m!
STr(Φ̇i

(i1...im)Ẋ
i1 . . . Ẋim) (B.9)

+
1

(m − 1)!
STr(Φi

(i1...im)Ẍ
i1 . . . Ẋim) .

This equation is exactly analogous to (B.4) above, and the rest of the proof proceeds in

parallel to that above.24 This time, we end up with the statement that

L =
d

dt

∑

n

1

n!
STr(Φ(i1···in)Ẋ

i1 · · · Ẋin) − Tr(ΦiẌ
i) + L̂ .

The special case that Φi ∝ Xi corresponds to

L0 = Tr(Ẋ2) .

Otherwise, all Xs and Ẋs in Φi and L̂ appear in commutators, so after integrating by parts

to remove the first term here, we have succeeded in writing the action as the integral of a

Lagrangian density for which all Xs and Ẋs appear in commutators.

24The only change is to the comment in the previous footnote, which should now deal with three special

cases, C ∝ [Xi, Xj ], C ∝ [Ẋi, Ẋj ], and C ∝ [Xi, Ẋj ], for which it is apparently not true that rearranging

the commutators

Tr(Ci1···in
Ẋ

i1 · · · Ẋ
in)

leads to an expression with no free Xs and less free Ẋs. But again, none of these cases are realized. The

first two are not possible since the commutator is an antisymmetric rotational tensor whose indices must

contract with the indices of symmetrized Ẋs, while the third is not possible since it would necessarily have

an odd number of time derivatives and violate time-reversal invariance.
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C. The matrix vector field V µ(y)

We first discuss the single brane vector field vµ(y). From the covariance property under

space translations δxi = ai,

δvi = −aj∂jv
i , δv0 = −aj∂jv

0 ,

follows that xi and yi always appear in the combination xi − yi. We define the expansion

vi =
∑

n

vi
i1...in(x − y)i1 . . . (x − y)in ,

v0 =
∑

n

v0
i1...in(x − y)i1 . . . (x − y)in , (C.1)

where the modes vµ
i1...in

only contain ẋ and higher derivatives. Using (4.2) we can calculate

vi once we know v0

vi = xi − yi +

∞
∑

p=1

1

p!

dpxi

dtp
(

v0
)p

. (C.2)

Furthermore from the defining equations (4.2) and (4.3) we can calculate iteratively the

modes of v0:

v0 = 0,

v0
i1

=
ẋi1

1 − ẋ2
,

v0
i1i2

=
1

1 − ẋ2

(

ẋ(i1 ẍi2)

1 − ẋ2
+

3

2

ẋ(i1 ẋi2)ẋkẍk

(1 − ẋ2)2

)

,

v0
i1...in = O(xn). (C.3)

Since the abelian distribution θ(y) of (4.7) forces yi = xi we only need to know the first n

modes of vµ when covariantizing dnxi/dtn in the manner explained in section 5.1.

The matrix generalization V µ(y) has the form

V µ(y) = V µ
sym(y) + ∆V µ(y), (C.4)

where V µ
sym(y) is the expression obtained by replacing all occurrences of xi in the expansion

of vµ(y) with Xi and using the completely symmetrized product of matrices. The calcula-

tion of ∆V µ(y) is much harder than that of the abelian part so we are forced to work order

by order in powers of X. The correction terms to the modes of ∆V µ(y) to fourth order in

X are as follows:

∆V 0 =
1

12
Sym

(

Ẋj [Ẋi, [Xj , Ẋi]] + Ẋj [Ẋj , [Ẋi,Xi]] + Ẋj [Ẋi, [Ẋj ,Xi]]

+Ẋj [Xj , [Ẍi,Xi]] + Ẋj [Ẍi, [Xj ,Xi]]
)

+ O(X6),

∆V 0
i1i2

=
1

12
Sym

(

Ẋj [Ẋi1 , [Ẍj , Ẋi2 ]] + Ẋj [Ẋj , [Ẍi1 , Ẋi2 ]] + 2Ẋj [Ẍi1 , [Ẋj , Ẋi2 ]]

+Ẋj [Xj , [
...

X
i1

, Ẋi2 ]] + Ẋj [
...

X
i1

, [Xj , Ẋi2 ]] + Ẋj [Ẋi1 , [Ẋj , Ẍi2 ]]
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+Ẋj [Ẍi1 , [Xj , Ẍi2 ]]
)

+ O(X6),

∆V i
i1

=
1

12
Sym

(

Ẋj [Ẋi, [Ẋj , Ẋi1 ]] + Ẋj [Xj , [Ẍi, Ẋi1 ]] + Ẋj [Ẍi, [Xj , Ẋi1 ]]

+Ẋj [Ẋi1 , [Ẋj , Ẋi]] + Ẋj [Xj , [Ẍi1 , Ẋi]] + Ẋj [Ẍi1 , [Xj , Ẋi]]
)

+ O(X6).

(C.5)

Corrections to ∆V i, ∆V i
i1i2

, ∆V 0
i1

and ∆V 0
i1i2i3

start at order O(X5) and have also been

calculated.

Here are some useful expressions for power counting.

V 0(y)|yi=0 = O(X2),

∂i1 . . . ∂inV 0(y)|yi=0 = O(Xn),

V i(y)|yi=0 = O(X),

∂jV
i(y)|yi=0 = −δij + O(X2),

∂i1 . . . ∂inV i(y)|yi=0 = O(Xn+1). (C.6)

For all integers m ≥ 0,

∂2mV 0|yi=0 = O(X2),

∂0∂
2mV 0|yi=0 = O(X2),

∂j∂
2mV 0|yi=0 = d2m+1Xj/dt2m+1 + O(X3),

∂2mV i|yi=0 = −d2mXi/dt2m + O(X3),

∂0∂
2mV i|yi=0 = −d2m+1Xi/dt2m+1 + O(X3),

∂j∂
2mV i|yi=0 = δijδm,0 + O(X2). (C.7)

Here ∂2 ≡ ηµν∂µ∂ν , η = diag(−1, 1, . . . , 1).

D. Calculation of the 2-commutator corrections to the D0-brane currents

and covariant matrix distribution

In this appendix, we outline the calculation of the two-commutator corrections to the

abelian expressions for the D0-brane current and covariant matrix distribution, required

by demanding Lorentz covariance. It is convenient to begin with the D0-brane current,

since parts of this calculation will appear again when we discuss the covariant matrix

distribution.

D.1 Outline of the calculation for the D0-brane current

To calculate corrections to the currents, we use ρ = ρ(0) + ρ(1) + O([·, ·]4) and J i = J i
(0) +

J i
(1) + O([·, ·]4) in eq. (6.6). The zeroth orders ρ(0) and J i

(0) are given by eq. (6.7) and we

use (2.10), (2.14) as the transformation law. We can work this out up to two commutators
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using (A.1). The thus calculated constraints can be further simplified if we make the ansatz

ρ(i1···in) = STr

[

∑

p

C
(i1...ip
n Xip+1 . . . Xin)

]

, (D.1)

J i;(i1···in) = STr

[

∑

p

[

D
(i1...ip
n Ẋ |i| + E

i;(i1...ip
n

]

Xip+1 . . . Xin)

]

, (D.2)

where Cn = Dn = En = 0 if n < p. From covariance of the current under spatial

translations, the first equation of (2.10), we find that

(n − p)C(p)
n = nC

(p)
n−1, (n − p)D(p)

n = nD
(p)
n−1, (n − p)E(p)

n = nE
(p)
n−1, (D.3)

This allows us to write everything in terms of Cp,Dp, Ep thereby producing the combina-

torial factors in (6.8). In fact, from the terms containing βi we find Dn = Cn and current

conservation leads to (6.9).

In the following we try to find a solution which is covariant without using the cyclicity

of the trace. In terms of Cp, Ep the constraints read

p βlδp
1T

i1l +
p(p − 1)

12
βlδp

2N (i1i2)l −
p(p − 1)(p − 2)

12
βlδp

3M (i1i2i3)l

+δ′βC
(i1...ip)
p − βlE

l;(i1...ip)
p + βl

d

dt
C

(li1...ip)
p+1 = 0,

βlδp
0

d

dt
T il +

p

12
βlδp

1K
i;i1l −

p(p − 1)

12
βlδp

2Li;(i1i2)l

+δ′β
(+1)E

i;(i1...ip)
p + βlC

(li1...ip)
p+1 Ẍi + βl d

dt
E

i;(li1...ip)
p+1 = 0, (D.4)

with T il given by (2.14), δ′ by (A.5) and we furthermore defined

δ′β
(m)Ar1...rs = δ′βAr1...rs + m βlẊ lAr1...rs , (D.5)

and

N (i1i2)j = [Ẋ(i1 , [Xi2),Xj ]] + [Xj , [X(i1 , Ẋi2)]],

M (i1i2i3)j = [X(i1 , Ẋi2 ][Xi3),Xj ],

Ki;i1j = [Ẍi, [Xi1 ,Xj ]] + [Ẋi1 , [Ẋi,Xj ]] + [Ẋi, [Xi1 , Ẋj ]]

+[Xj , [Xi1 , Ẍi]] + [Xj , [Ẋi, Ẋi1 ]] + [Ẋj , [Xi1 , Ẋi]],

Li;(i1i2)j = [X(i1 , Ẍ |i|][Xi2),Xj ] + [X(i1 , Ẋ |i|][Xi2), Ẋj ] + [Ẋi, Ẋ(i1 ][Xi2),Xj ]

+[X(i1 , Ẋi2)][Ẋi,Xj ]. (D.6)

Interestingly if we apply a field redefinition (2.16) the boost transformation law will

change as

∆T ij = [δβ , δ̃]Xi = δ′F i, (D.7)

where we defined δ̃Xi = F i. As is clear from the first eq. in (D.4) for p = 1, this can be com-

pletely absorbed by putting Ci
1 → Ci

1 −F i. In particular, we can apply a field redefinition

to put Ci
1 = 0 but that will make the transformation law (2.14) more complicated.

Solving these equations is tedious and requires heavy use of formula (A.4). We present

the result in subsection D.3.

– 32 –



J
H
E
P
0
1
(
2
0
0
6
)
1
5
1

D.2 Outline of the calculation for the covariant matrix distribution

To make optimal use of the ansatz (4.15) we can apply the following formula

δ′

[

∂

∂Ẋj1

. . .
∂

∂Ẋjn

√

1 − ẊiẊi A(i1...ip);(j1...jn)

]

=

=
∂

∂Ẋj1

. . .
∂

∂Ẋjn

√

1 − ẊiẊi δ′(n−1)A(i1...ip);(j1...jn)

+n(n − 2)βl
∂

∂Ẋj2

. . .
∂

∂Ẋjn

√

1 − ẊiẊi A(i1...ip);(lj2...jn), (D.8)

with δ′ given by (A.5) and δ′(m) by (D.5). The constraint (4.11) then reduces for Cn and

En to (D.4) and for the R to

βl 1

12
δp
0δk

2U (j1j2)l − βl 1

12
δp
0δ

k
3Q(j1j2j3)l − βl p

12
δp
1δ

k
2V (j1j2);i1l

+δ′R
(j1...jk);(i1...ip)
p + (k + 1)(k − 1)R

(lj1...jk);(i1...ip)
p + Ẍ(j1R

j2...jk);(li1...ip)
p+1

+
d

dt
R

(j1...jk);(li1...ip)
p+1 = 0, (D.9)

with

U (ik)j = [Ẍ(i, [Ẋk),Xj ]] + [Xj , [Ẋ(i, Ẍk)]] + [Ẋ(i, [Ẋk), Ẋj ]]

V (ik);i1j = [Ẋ(i, Ẍk)][Xi1 ,Xj ] + [Ẋ(i,X |j ][Xi1|, Ẍk)] + [Ẋ(i, Ẋ |j ][Xi1|, Ẋk)]

+[Ẋ(i, Ẋ |i1|][Ẋk),Xj ]

Q(ikm)j = [Ẋ(i, Ẍk][Ẋm),Xj ]. (D.10)

Our results for all of these tensors up to two commutators are given below.

D.3 Results

Note that since we do not use the cyclicity of the trace the solutions will split into a part

containing nested commutators (as in the tensors N and K in (D.6)) and a part containing

unnested commutators (as in the tensors M and L in (D.6)). A minimal but non-unique

solution of the constraints (D.4) using the transformation law (2.14) is given by:

C
(i1i2i3)
3,unnested =

1

2
EjtẊtM

(i1i2i3)
j +

1

4
Ej1t1Ẋt1E

j2t2Ẋt2Ẍ
(i1 [Xi2 ,Xj1 ][X

i3),Xj2 ],

C
(i1i2)
2,nested =

−
1

6
EjtẊtN

(i1i2)
j −

1

6
Ej1t1Ẋt1E

j2t2Ẋt2Ẍ
(i1 [Xj1 , [X

i2),Xj2 ]],

C
(i1i2)
2,unnested =

−
1

12
Ej1t1Ẋt1E

j2t2Ẋt2

(

2[Xj1 , Ẍ
(i1 ][Xi2),Xj2 ] + 2[X(i1 , Ẋi2)][Xj1 , Ẋj2 ]

+[Xj1 , Ẋ
(i1 ][Xj2 , Ẋ

i2)] + 2[Ẋ(i1 , Ẋj1 ][X
i2),Xj2 ]

)
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−
1

3
Ej1t1Ẋt1E

j2t2Ẋt2E
j3t3Ẋt3Ẍ

(i1 [Xj1 , Ẋj2 ][X
i2),Xj3 ]

−
1

6
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2

(

(h1 + h3)[X
(i1 , Ẋj2 ][X

i2),Xj ]

+(h1 + h2)[X
(i1 , Ẋi2)][Xj2 ,Xj ] + (h2 + h3)[Xj2 , Ẋ

(i1 ][Xi2),Xj ]

+h4[Xj , Ẋ
(i2 ][Xj2 ,X

i1)] + h5[X
(i2 , Ẋj ][Xj2 ,X

i1)]
)

−
1

6
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3

(

(h1 + h3)Ẍj2 [X
(i1 ,Xj3 ][X

i2),Xj ]

+(h1 + h2 + h4)Ẍ
(i1 [Xi2),Xj2 ][Xj3 ,Xj ] + h5Ẍj [X

(i1 ,Xj2 ][Xj3 ,X
i1)]

)

,

Ci1
1,nested =

1

24
Ej1t1Ẋt1E

j2t2Ẋt2

(

− [Xj1 , [Ẍ
i1 ,Xj2 ]] − 2[Ẋi1 , [Ẋj1 ,Xj2 ]] + [Ẋj1 , [Ẋi1 ,Xj2 ]]

)

+
1

24
Ej1t1Ẋt1E

j2t2Ẋt2E
j3t3Ẋt3

(

2Ẍi1 [Xj1, [Xj2 , Ẋj3 ]] − Ẍj1 [Xj2 , [Xj3 , Ẋ
i1 ]]

)

+
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2

(

f1[Ẋ
i1 , [Xj2 ,Xj ]] + f2[Ẋj2 , [X

i1 ,Xj ]]

+f3[Xj , [X
i1 , Ẋj2 ]] + f4[Xj , [Xj2 , Ẋ

i1 ]] + f5[Ẋj , [X
i1 ,Xj2 ]]

)

1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3

(

f1Ẍ
i1 [Xj2 , [Xj3 ,Xj ]]

+f2Ẍj2 [Xj3, [X
i1 ,Xj ]] + f3Ẍj2 [Xj , [X

i1 ,Xj3 ]] + f5Ẍj [Xj2 , [X
i1 ,Xj3 ]]

)

,

Ci1
1,unnested =

1

8
Ej1t1Ẋt1E

j2t2Ẋt2E
j3t3Ẋt3

(

[Ẍi1 ,Xj1 ][Ẋj2 ,Xj3 ] + [Ẋi1 , Ẋj1 ][Xj2 , Ẋj3 ]
)

+
3

16
Ej1t1Ẋt1E

j2t2Ẋt2E
j3t3Ẋt3E

j4t4Ẋt4Ẍ
i1 [Ẋj1 ,Xj2 ][Ẋj3 ,Xj4 ]

+
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3

(

(h1 − h2 + f1 − f2 − f3 + f4) [Ẋi1 , Ẋj2 ][Xj3 ,Xj ] + (h1 − f3) [Xi1 , Ẍj2 ][Xj3 ,Xj ]

+ (h1 + h4 − 2f3) [Xi1 , Ẋj2 ][Ẋj3 ,Xj ] + (h1 − h5 − f5) [Xi1 , Ẋj2 ][Xj3 , Ẋj ]

+ (−h2 + f4 − 1) [Ẍi1 , Ẋj2 ][Xj3 ,Xj ] + (−h2 + h4 + f1 + 2f4) [Ẋi1 ,Xj2 ][Ẋj3 ,Xj ]

+ (−h2 − h5 + f1 − f5 − 1) [Ẋi1 ,Xj2 ][Xj3 , Ẋj ] + h3[X
i1 ,Xj ][Xj2 , Ẍj3 ]

+ (h3 − f2 − f3 − f4 + 1) [Ẋi1 ,Xj ][Xj2 , Ẋj3 ] + (h3 − f2) [Xi1 , Ẋj ][Xj2 , Ẋj3 ]

+ (−h4 + h5 − f2 + f5) [Xi1 ,Xj2 ][Ẋj , Ẋj3 ] + (−h4 + f3) [Xi1 ,Xj2 ][Xj , Ẍj3 ]

−h5[X
i1 ,Xj2 ][Xj3 , Ẍj ]

)

+
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3E

j4t4Ẋt4
(

(−f3 + h1 + h4)
...

Xj2 [Xi1 ,Xj3 ][Xj4 ,Xj ]
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+ (f1 − f2 − f3 − f4 + 3) Ẍi1 [Xj2 , Ẋj3 ][Xj4 ,Xj ]

+ (−f2 + f5 + h3 − h4 − h5) Ẍj [Xj2 , Ẋj3 ][X
i1 ,Xj4 ]

+ (−f1 + f2 + f3 − 2f4 − h1 + 5h2 − h4) Ẍj2 [Xj3 , Ẋ
i1 ][Xj4 ,Xj ]

+ (f2 − f5 + h1 + h4 − 5h5) Ẍj2 [Xj3 , Ẋj ][X
i1 ,Xj4 ]

+ (3f3 − h1 − 6h4) Ẍj2[Xj , Ẋj3 ][X
i1 ,Xj4 ]

+ (3f3 − 6h1 − h4) Ẍj2[Xj ,Xj3 ][X
i1 , Ẋj4 ] + 5h3Ẍj2[Xj3 , Ẋj4 ][X

i1 ,Xj ]

)

+
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3E

j4t4Ẋt4E
j5t5Ẋt5

(3f3 − 6h1 − 6h4) Ẍj2Ẍj3[Xj ,Xj4 ][X
i1 ,Xj5 ]

+
1

12
Ejt

...

X t

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3

(

h1[X
i1 , Ẋj2 ][Xj3 ,Xj ] + h2[Xj2 , Ẋ

i1 ][Xj3 ,Xj ] + h3[Xj2 , Ẋj3 ][X
i1 ,Xj ]

+h4[X
i1 ,Xj2 ][Ẋj3 ,Xj ] + h5[Xj2 ,X

i1 ][Xj3 , Ẋj ]

)

+
1

12
Ejt

...

X t

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3E

j4t4Ẋt4

(h1 + h4) Ẍj2[X
i1 ,Xj3 ][Xj4 ,Xj ]

+
1

12
Ej1t1Ẍt1E

j2t2Ẍt2

(

1 + ẊuEuvẊv

)2
Ej3t3Ẋt3E

j4t4Ẋt4
(

(h1 + h3) Ẍj3 [X
i1 ,Xj1 ][Xj4 ,Xj2 ] + h2Ẍ

i1 [Xj3,Xj1 ][Xj4 ,Xj2 ]

+h5Ẍj1[Xj3 ,Xj2 ][Xj4 ,X
i1 ]

)

,

E
i;(i1i2)
2,unnested =

1

6
EjtẊtL

i;(i1i2)
j +

1

6
Ej1t1Ẋt1E

j2t2Ẋt2

(1

2

...

X
i[X(i1 ,Xj1 ][X

i2),Xj2 ]

+Ẍi[X(i1 , Ẋj1 ][X
i2),Xj2 ] + Ẍj1 [X

(i1 , Ẋ |i|][Xi2),Xj2 ] + Ẍ(i1 [Ẋ |i|,Xj1 ][X
i2),Xj2 ]

)

+
1

6
Ej1t1Ẋt1E

j2t2Ẋt2E
j3t3Ẋt3Ẍ

iẌj1[X
(i1 ,Xj2 ][X

i2),Xj3 ]

+
1

6
EjtẌt

(

1 + ẊuEuvẊv

) (

h1[X
i, Ẋ(i1 ][Xi2),Xj ] + h2[X

(i1 , Ẋ |i|][Xi2),Xj ]

+h3[X
(i1 , Ẋi2)][Xi,Xj ] + h4[Xj , Ẋ

(i2 ][Xi1),Xi] + h5[X
(i1 , Ẋj ][X

i2),Xi]
)

+
1

6
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2

(

h1Ẍ
(i1 [X |i|,Xj2 ][X

i2),Xj ]

+h2Ẍ
i[X(i1 ,Xj2 ][X

i2),Xj ]h3Ẍ
(i1 [Xi2),Xj2 ][X

i,Xj ] + h4Ẍ
(i1 [Xj ,Xj2 ][X

i2),Xi]

+h5Ẍj [X
(i1 ,Xj2 ][X

i2),Xi]
)

, (D.11)

where f1, f2, f3, f4, f5, h1, h2, h3, h4, h5 are arbitrary coefficients. We have current conser-
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vation (6.9) if these satisfy

f1 + f2 = 1, f3 + f4 = 1, h1 + h2 + h3 = 1. (D.12)

Furthermore C0 = 1 — this produces the zeroth order result (6.7) — and again from current

conservation Ei
0 = d

dt
Ci

1. If all the other tensors are known we can straightforwardly find

Ei;i1
1 from the first equation in (D.4) for p = 1. All other tensors Cp for p ≥ 4 and Ep for

p ≥ 3 are zero.

A minimal but non-unique solution for the R tensors appearing in the covariant matrix

distribution is given by

R
(ik)
0 =

−
1

12
EjtẊtU

ik
j −

1

12
Ej1t1Ẋt1E

j2t2Ẋt2

( ...

X (i[Xj1 , [Ẋ
k),Xj2 ]]

+Ẍ(i[Ẋj1 , [Ẋ
k),Xj2 ]] + Ẍj1[Ẋ

(i, [Ẋk),Xj2 ]] + Ẍ(i[Xj1 , [Ẋ
k), Ẋj2 ]]

)

−
1

6
Ej1t1Ẋt1E

j2t2Ẋt2E
j3t3Ẋt3Ẍ

(iẌj1 [Xj2 , [Ẋ
k),Xj3 ]]

−
1

12
Ej1t1Ẋt1E

j2t2Ẋt2

(

[Ẋ(i,Xj1 ][Xj2 ,
...

X k)] + 2[Ẋ(i, Ẍk)][Xj1 , Ẋj2 ]

+
1

2
[Ẍ(i,Xj1 ][Ẍ

k),Xj2 ] + [Ẍ(i,Xj1 ][Ẋj2 , Ẋ
k)] + [Ẍ(i, Ẋj1 ][Ẋ

k),Xj2 ]

+[Ẋ(i, Ẍj1 ][Ẋ
k),Xj2 ] +

3

2
[Ẋ(i, Ẋj1 ][Ẋ

k), Ẋj2 ]
)

+
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2Ẍ
(k

(

f1[Ẋ
i), [Xj2 ,Xj ]] + f2[Ẋj2 , [X

i),Xj ]]

+f3[Xj , [X
i), Ẋj2 ]] + f4[Xj , [Xj2 , Ẋ

i)]] + f5[Ẋj , [X
i),Xj2 ]]

)

+
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3Ẍ

(k

(

f1Ẍ
i)[Xj2, [Xj3 ,Xj ]] + f2Ẍj2 [Xj3 , [X

i),Xj ]]

+f3Ẍj2[Xj , [X
i),Xj3 ]] + f5Ẍj [Xj2 , [X

i),Xj3 ]]
)

,

−
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2V
ik;

j2j

−
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3

(

...

X(i
(

(1 + h2)[Ẋ
k),Xj2 ][Xj3 ,Xj ] − h1[X

k), Ẋj2 ][Xj3 ,Xj ] − h3[X
k),Xj ][Xj2 , Ẋj3 ]

−h4[X
k),Xj2 ][Ẋj3 ,Xj ] − h5[X

k),Xj2 ][Ẋj ,Xj3 ]
)

+Ẍ(i
(

(f4 − 2h2)[Xj2 , Ẍ
k)][Xj3 ,Xj ]

+(1 − f1 + f2 + f3 − f4 − 2h1 + 2h2)[Ẋ
k), Ẋj2 ][Xj3 ,Xj ]

+(−1 + f1 − f5 − 2h2 − 2h5)[Ẋ
k),Xj2 ][Ẋj ,Xj3 ]
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+(1 + f2 + f3 + f4 − 2h3)[Ẋ
k),Xj ][Xj2 , Ẋj3 ]

+(f3 − 2h1)[X
k), Ẍj2 ][Xj3 ,Xj ] + 2(f3 − h2 − h4)[X

k), Ẋj2 ][Ẋj3 ,Xj ]

+(f5 − 2h1 + 2h5)[X
k), Ẋj2 ][Xj3 , Ẋj ] + (f1 + 2f4 − 2h2 + 2h4)[Ẋ

k),Xj2 ][Xj , Ẋj3 ]

+(f2 − 2h3)[X
k), Ẋj ][Xj2 , Ẋj3 ] − 2h3[X

k),Xj ][Xj2 , Ẍj3 ]

+(f3 − 2h4)[X
k),Xj2 ][Ẍj3 ,Xj ] + (−f2 + f5 − 2h4 + 2h5)[X

k),Xj2 ][Ẋj3 , Ẋj ]

−2h5[X
k),Xj2 ][Ẍj ,Xj3 ]

)

+ Ẍj [Ẋ
(i,Xj2 ][Xj3 ,X

k)]

)

−
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3E

j4t4Ẋt4
(

(f3 − 2(h1 + h4))
...

Xj2 Ẍ(i[Xk),Xj3 ][Xj4 ,Xj ] − (h1 + h4)
...

X (iẌj2[X
k),Xj3 ][Xj4 ,Xj ]

(f2 − f5 − 2h3 + 2h4 + 2h5)Ẍ
(iẌj [X

k),Xj2 ][Xj3 , Ẋj4 ]

+(2 − f1 + f2 + f3 − 2f4 − 2h1 + 10h2 − 2h4)Ẍ
(iẌj2 [Ẋ

k),Xj3 ][Xj4 ,Xj ]

+(3f3 − 12h1 − 2h4)Ẍ
(iẌj2 [X

k), Ẋj3 ][Xj4 ,Xj ] − 10h3Ẍ
(iẌj2 [X

k),Xj ][Xj3 , Ẋj4 ]

+(3f3 − 2h1 − 12h4)Ẍ
(iẌj2 [X

k),Xj3 ][Ẋj4 ,Xj ]

+(−f2 + f5 − 2h1 − 2h4 + 10h5)Ẍ
(iẌj2 [X

k),Xj3 ][Xj4 , Ẋj ]

+(−1 − f1 + f2 + f3 + f4)Ẍ
(iẌk)[Xj2, Ẋj3 ][Xj4 ,Xj ]

)

−
1

4
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3E

j4t4Ẋt4E
j5t5Ẋt5

(f3 − 4(h1 + h4))Ẍ
(iẌj2Ẍj3[X

k),Xj4 ][Xj5 ,Xj ]

+
1

6
Ejt

...

Xt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3Ẍ

(k

(

h1[X
i), Ẋj2 ][Xj3 ,Xj ] + h2[Xj2 , Ẋ

i)][Xj3 ,Xj ]

+h3[Xj2 , Ẋj3 ][X
i),Xj ] + h4[Xj , Ẋj2 ][Xj3 ,X

i)] + h5[Xj2 , Ẋj ][Xj3 ,X
i)]

)

+
1

6
Ejt

...

Xt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3E

j4t4Ẋt4Ẍ
(k

(h1 + h4) Ẍj2[X
i),Xj3 ][Xj4 ,Xj ]

+
1

12
Ej1t1Ẍt1E

j2t2Ẍt2

(

1 + ẊuEuvẊv

)2
Ej3t3Ẋt3Ẍ

(k

(

h1[X
i), Ẋj1 ][Xj3 ,Xj2 ] + h2[Ẋ

i),Xj1 ][Xj2 ,Xj3 ] + (h3 − h4)[X
i),Xj1 ][Xj2 , Ẋj3 ]

+(−h3 + h5)[X
i),Xj1 ][Ẋj2 ,Xj3 ] + (h4 + h5)[X

i),Xj3 ][Ẋj1 ,Xj2 ]
)

+
1

12
Ej1t1Ẍt1E

j2t2Ẍt2

(

1 + ẊuEuvẊv

)2
Ej3t3Ẋt4E

j4t4Ẋt4Ẍ
(k

(

(2h1 + h3 + h4)Ẍj3 [X
i),Xj1 ][Xj4 ,Xj2 ] + h2Ẍ

i)[Xj3,Xj1 ][Xj4 ,Xj2 ]

+(−h1 − h4 + h5)Ẍj1 [Xj3,Xj2 ][Xj4 ,X
i)]

)

R
(ik);i1
1 =

1

12
EjtẊtV

ik;i1
j +

1

12
Ej1t1Ẋt1E

j2t2Ẋt2

( ...

X
(i[Ẋk),Xj1 ][X

i1 ,Xj2 ]
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+Ẍ(i[Ẋk), Ẋj1 ][X
i1 ,Xj2 ] + Ẍ(i[Ẋk),Xj1 ][X

i1 , Ẋj2 ] + Ẍj1[Ẋ
(i,Xj2 ][X

|i1|, Ẋk)]

+
1

2
Ẍi1 [Ẋ(i,Xj1 ][Ẋ

k),Xj2 ]
)

+
1

6
Ej1t1Ẋt1E

j2t2Ẋt2E
j3t3Ẋt3Ẍ

(iẌj1 [Ẋ
k),Xj2 ][X

i1 ,Xj3 ]

−
1

6
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋ
t2Ẍ(k

(

h1[X
i), Ẋ(j2 ][Xi1),Xj ] + h2[Ẋ

i),X(j2 ][Xj ,X
i1)]

+h3[X
i),Xj ][X

(j2 , Ẋi1)] + h4[X
i),X(j2 ][Ẋi1),Xj ] + h5[X

i),X(j2 ][Ẋj ,X
i1)]

)

−
1

6
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2Ej3t3Ẋ
t3Ẍ(k

(

h1[X
i),Xj2 ][X

(j3 ,Xj ]Ẍ
i1) +

1

2
h2Ẍ

i)[Xi1 ,Xj2 ][X
j3 ,Xj ]

1

2
h3[X

i),Xj ][X
i1 ,Xj2 ]Ẍ

j3 + h4[X
i),X(j3 ][Xj2 ,Xj ]Ẍ

i1)

+
1

2
h5Ẍj [X

i),Xj3 ][Xj2 ,X
i1 ]

)

,

R
(ikm)
0 =

1

12
EjtẊtQ

ikm
j +

1

24
Ej1t1Ẋt1E

j2t2Ẋt2

( ...

X
(i[Ẋk,Xj1 ][Ẋ

m),Xj2 ]

+2Ẍ(i[Ẋk, Ẋj1 ][Ẋ
m),Xj2 ]

)

+
1

12
Ej1t1Ẋt1E

j2t2Ẋt2E
j3t3Ẋt3Ẍ

(iẌj1[Ẋ
k,Xj2 ][Ẋ

m),Xj3 ]

+
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3Ẍ

(kẌm

(

h1[X
i), Ẋj2 ][Xj3 ,Xj ] + h2[Xj2 , Ẋ

i)][Xj3 ,Xj ]

+h3[Xj2 , Ẋj3 ][X
i),Xj ] + h4[Xj , Ẋj2 ][Xj3 ,X

i)] + h5[Xj2 , Ẋj ][Xj3 ,X
i)]

)

+
1

12
EjtẌt

(

1 + ẊuEuvẊv

)

Ej2t2Ẋt2E
j3t3Ẋt3E

j4t4Ẋt4Ẍ
(kẌm

(h1 + h4) Ẍj2[X
i),Xj3 ][Xj4 ,Xj ]. (D.13)

where f1, f2, f3, f4, f5, h1, h2, h3 are the same coefficients as in (D.11). Since there is now

no need to satisfy current conservation, we can put them all to zero.
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